3.6.77 \(\int \frac {(a+b \cos (c+d x))^3}{\sqrt {\cos (c+d x)}} \, dx\) [577]

3.6.77.1 Optimal result
3.6.77.2 Mathematica [A] (verified)
3.6.77.3 Rubi [A] (verified)
3.6.77.4 Maple [B] (verified)
3.6.77.5 Fricas [C] (verification not implemented)
3.6.77.6 Sympy [F(-1)]
3.6.77.7 Maxima [F]
3.6.77.8 Giac [F]
3.6.77.9 Mupad [B] (verification not implemented)

3.6.77.1 Optimal result

Integrand size = 23, antiderivative size = 116 \[ \int \frac {(a+b \cos (c+d x))^3}{\sqrt {\cos (c+d x)}} \, dx=\frac {6 b \left (5 a^2+b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{5 d}+\frac {2 a \left (a^2+b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {8 a b^2 \sqrt {\cos (c+d x)} \sin (c+d x)}{5 d}+\frac {2 b^2 \sqrt {\cos (c+d x)} (a+b \cos (c+d x)) \sin (c+d x)}{5 d} \]

output
6/5*b*(5*a^2+b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*Elliptic 
E(sin(1/2*d*x+1/2*c),2^(1/2))/d+2*a*(a^2+b^2)*(cos(1/2*d*x+1/2*c)^2)^(1/2) 
/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2))/d+8/5*a*b^2*sin( 
d*x+c)*cos(d*x+c)^(1/2)/d+2/5*b^2*(a+b*cos(d*x+c))*sin(d*x+c)*cos(d*x+c)^( 
1/2)/d
 
3.6.77.2 Mathematica [A] (verified)

Time = 0.57 (sec) , antiderivative size = 84, normalized size of antiderivative = 0.72 \[ \int \frac {(a+b \cos (c+d x))^3}{\sqrt {\cos (c+d x)}} \, dx=\frac {2 \left (3 \left (5 a^2 b+b^3\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )+5 a \left (a^2+b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )+b^2 \sqrt {\cos (c+d x)} (5 a+b \cos (c+d x)) \sin (c+d x)\right )}{5 d} \]

input
Integrate[(a + b*Cos[c + d*x])^3/Sqrt[Cos[c + d*x]],x]
 
output
(2*(3*(5*a^2*b + b^3)*EllipticE[(c + d*x)/2, 2] + 5*a*(a^2 + b^2)*Elliptic 
F[(c + d*x)/2, 2] + b^2*Sqrt[Cos[c + d*x]]*(5*a + b*Cos[c + d*x])*Sin[c + 
d*x]))/(5*d)
 
3.6.77.3 Rubi [A] (verified)

Time = 0.67 (sec) , antiderivative size = 117, normalized size of antiderivative = 1.01, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.478, Rules used = {3042, 3272, 27, 3042, 3502, 27, 3042, 3227, 3042, 3119, 3120}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \cos (c+d x))^3}{\sqrt {\cos (c+d x)}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\left (a+b \sin \left (c+d x+\frac {\pi }{2}\right )\right )^3}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx\)

\(\Big \downarrow \) 3272

\(\displaystyle \frac {2}{5} \int \frac {12 a b^2 \cos ^2(c+d x)+3 b \left (5 a^2+b^2\right ) \cos (c+d x)+a \left (5 a^2+b^2\right )}{2 \sqrt {\cos (c+d x)}}dx+\frac {2 b^2 \sin (c+d x) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}{5 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \int \frac {12 a b^2 \cos ^2(c+d x)+3 b \left (5 a^2+b^2\right ) \cos (c+d x)+a \left (5 a^2+b^2\right )}{\sqrt {\cos (c+d x)}}dx+\frac {2 b^2 \sin (c+d x) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \int \frac {12 a b^2 \sin \left (c+d x+\frac {\pi }{2}\right )^2+3 b \left (5 a^2+b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )+a \left (5 a^2+b^2\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {2 b^2 \sin (c+d x) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}{5 d}\)

\(\Big \downarrow \) 3502

\(\displaystyle \frac {1}{5} \left (\frac {2}{3} \int \frac {3 \left (5 a \left (a^2+b^2\right )+3 b \left (5 a^2+b^2\right ) \cos (c+d x)\right )}{2 \sqrt {\cos (c+d x)}}dx+\frac {8 a b^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d}\right )+\frac {2 b^2 \sin (c+d x) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}{5 d}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {1}{5} \left (\int \frac {5 a \left (a^2+b^2\right )+3 b \left (5 a^2+b^2\right ) \cos (c+d x)}{\sqrt {\cos (c+d x)}}dx+\frac {8 a b^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d}\right )+\frac {2 b^2 \sin (c+d x) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (\int \frac {5 a \left (a^2+b^2\right )+3 b \left (5 a^2+b^2\right ) \sin \left (c+d x+\frac {\pi }{2}\right )}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {8 a b^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d}\right )+\frac {2 b^2 \sin (c+d x) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}{5 d}\)

\(\Big \downarrow \) 3227

\(\displaystyle \frac {1}{5} \left (3 b \left (5 a^2+b^2\right ) \int \sqrt {\cos (c+d x)}dx+5 a \left (a^2+b^2\right ) \int \frac {1}{\sqrt {\cos (c+d x)}}dx+\frac {8 a b^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d}\right )+\frac {2 b^2 \sin (c+d x) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}{5 d}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{5} \left (3 b \left (5 a^2+b^2\right ) \int \sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}dx+5 a \left (a^2+b^2\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {8 a b^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d}\right )+\frac {2 b^2 \sin (c+d x) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}{5 d}\)

\(\Big \downarrow \) 3119

\(\displaystyle \frac {1}{5} \left (5 a \left (a^2+b^2\right ) \int \frac {1}{\sqrt {\sin \left (c+d x+\frac {\pi }{2}\right )}}dx+\frac {6 b \left (5 a^2+b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {8 a b^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d}\right )+\frac {2 b^2 \sin (c+d x) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}{5 d}\)

\(\Big \downarrow \) 3120

\(\displaystyle \frac {1}{5} \left (\frac {10 a \left (a^2+b^2\right ) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{d}+\frac {6 b \left (5 a^2+b^2\right ) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{d}+\frac {8 a b^2 \sin (c+d x) \sqrt {\cos (c+d x)}}{d}\right )+\frac {2 b^2 \sin (c+d x) \sqrt {\cos (c+d x)} (a+b \cos (c+d x))}{5 d}\)

input
Int[(a + b*Cos[c + d*x])^3/Sqrt[Cos[c + d*x]],x]
 
output
(2*b^2*Sqrt[Cos[c + d*x]]*(a + b*Cos[c + d*x])*Sin[c + d*x])/(5*d) + ((6*b 
*(5*a^2 + b^2)*EllipticE[(c + d*x)/2, 2])/d + (10*a*(a^2 + b^2)*EllipticF[ 
(c + d*x)/2, 2])/d + (8*a*b^2*Sqrt[Cos[c + d*x]]*Sin[c + d*x])/d)/5
 

3.6.77.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3119
Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)* 
(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3120
Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2 
)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{c, d}, x]
 

rule 3227
Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[c   Int[(b*Sin[e + f*x])^m, x], x] + Simp[d/b   Int 
[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]
 

rule 3272
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*Cos[e + f*x]*(a + b*Sin[e + f* 
x])^(m - 2)*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(m + n))), x] + Simp[1/(d*(m 
 + n))   Int[(a + b*Sin[e + f*x])^(m - 3)*(c + d*Sin[e + f*x])^n*Simp[a^3*d 
*(m + n) + b^2*(b*c*(m - 2) + a*d*(n + 1)) - b*(a*b*c - b^2*d*(m + n - 1) - 
 3*a^2*d*(m + n))*Sin[e + f*x] - b^2*(b*c*(m - 1) - a*d*(3*m + 2*n - 2))*Si 
n[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && NeQ[b*c - a* 
d, 0] && NeQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 2] && (IntegerQ[m 
] || IntegersQ[2*m, 2*n]) &&  !(IGtQ[n, 2] && ( !IntegerQ[m] || (EqQ[a, 0] 
&& NeQ[c, 0])))
 

rule 3502
Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) 
+ (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-C)*Co 
s[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m + 2))), x] + Simp[1/(b*(m 
+ 2))   Int[(a + b*Sin[e + f*x])^m*Simp[A*b*(m + 2) + b*C*(m + 1) + (b*B*(m 
 + 2) - a*C)*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] 
 &&  !LtQ[m, -1]
 
3.6.77.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(411\) vs. \(2(158)=316\).

Time = 9.48 (sec) , antiderivative size = 412, normalized size of antiderivative = 3.55

method result size
default \(-\frac {2 \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{3}+20 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a \,b^{2}+8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{3}-10 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) a \,b^{2}-2 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) b^{3}+5 a^{3} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )+5 a \,b^{2} \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )-15 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) a^{2} b -3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right ) b^{3}\right )}{5 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(412\)
parts \(\frac {2 a^{3} \operatorname {am}^{-1}\left (\frac {d x}{2}+\frac {c}{2}| \sqrt {2}\right )}{d}-\frac {2 b^{3} \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (-8 \cos \left (\frac {d x}{2}+\frac {c}{2}\right ) \left (\sin ^{6}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+8 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-3 \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{5 \sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}+\frac {6 a^{2} b \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {-2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+1}\, E\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}-\frac {2 a \,b^{2} \sqrt {\left (2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1\right ) \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )}\, \left (4 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )-2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right ) \cos \left (\frac {d x}{2}+\frac {c}{2}\right )+\sqrt {\frac {1}{2}-\frac {\cos \left (d x +c \right )}{2}}\, \sqrt {2 \left (\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, F\left (\cos \left (\frac {d x}{2}+\frac {c}{2}\right ), \sqrt {2}\right )\right )}{\sqrt {-2 \left (\sin ^{4}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )+\sin ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )}\, \sin \left (\frac {d x}{2}+\frac {c}{2}\right ) \sqrt {2 \left (\cos ^{2}\left (\frac {d x}{2}+\frac {c}{2}\right )\right )-1}\, d}\) \(544\)

input
int((a+cos(d*x+c)*b)^3/cos(d*x+c)^(1/2),x,method=_RETURNVERBOSE)
 
output
-2/5*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-8*cos(1/2*d 
*x+1/2*c)*sin(1/2*d*x+1/2*c)^6*b^3+20*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c 
)^4*a*b^2+8*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^4*b^3-10*cos(1/2*d*x+1/2 
*c)*sin(1/2*d*x+1/2*c)^2*a*b^2-2*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^2*b 
^3+5*a^3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*Ell 
ipticF(cos(1/2*d*x+1/2*c),2^(1/2))+5*a*b^2*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2 
*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-15*(s 
in(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos( 
1/2*d*x+1/2*c),2^(1/2))*a^2*b-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d* 
x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*b^3)/(-2*sin(1/2 
*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d* 
x+1/2*c)^2-1)^(1/2)/d
 
3.6.77.5 Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 185, normalized size of antiderivative = 1.59 \[ \int \frac {(a+b \cos (c+d x))^3}{\sqrt {\cos (c+d x)}} \, dx=\frac {2 \, {\left (b^{3} \cos \left (d x + c\right ) + 5 \, a b^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right ) - 5 \, \sqrt {2} {\left (i \, a^{3} + i \, a b^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 5 \, \sqrt {2} {\left (-i \, a^{3} - i \, a b^{2}\right )} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) - 3 \, \sqrt {2} {\left (-5 i \, a^{2} b - i \, b^{3}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 3 \, \sqrt {2} {\left (5 i \, a^{2} b + i \, b^{3}\right )} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right )}{5 \, d} \]

input
integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(1/2),x, algorithm="fricas")
 
output
1/5*(2*(b^3*cos(d*x + c) + 5*a*b^2)*sqrt(cos(d*x + c))*sin(d*x + c) - 5*sq 
rt(2)*(I*a^3 + I*a*b^2)*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d* 
x + c)) - 5*sqrt(2)*(-I*a^3 - I*a*b^2)*weierstrassPInverse(-4, 0, cos(d*x 
+ c) - I*sin(d*x + c)) - 3*sqrt(2)*(-5*I*a^2*b - I*b^3)*weierstrassZeta(-4 
, 0, weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x + c))) - 3*sqrt(2 
)*(5*I*a^2*b + I*b^3)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, co 
s(d*x + c) - I*sin(d*x + c))))/d
 
3.6.77.6 Sympy [F(-1)]

Timed out. \[ \int \frac {(a+b \cos (c+d x))^3}{\sqrt {\cos (c+d x)}} \, dx=\text {Timed out} \]

input
integrate((a+b*cos(d*x+c))**3/cos(d*x+c)**(1/2),x)
 
output
Timed out
 
3.6.77.7 Maxima [F]

\[ \int \frac {(a+b \cos (c+d x))^3}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(1/2),x, algorithm="maxima")
 
output
integrate((b*cos(d*x + c) + a)^3/sqrt(cos(d*x + c)), x)
 
3.6.77.8 Giac [F]

\[ \int \frac {(a+b \cos (c+d x))^3}{\sqrt {\cos (c+d x)}} \, dx=\int { \frac {{\left (b \cos \left (d x + c\right ) + a\right )}^{3}}{\sqrt {\cos \left (d x + c\right )}} \,d x } \]

input
integrate((a+b*cos(d*x+c))^3/cos(d*x+c)^(1/2),x, algorithm="giac")
 
output
integrate((b*cos(d*x + c) + a)^3/sqrt(cos(d*x + c)), x)
 
3.6.77.9 Mupad [B] (verification not implemented)

Time = 14.75 (sec) , antiderivative size = 125, normalized size of antiderivative = 1.08 \[ \int \frac {(a+b \cos (c+d x))^3}{\sqrt {\cos (c+d x)}} \, dx=\frac {2\,a^3\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {6\,a^2\,b\,\mathrm {E}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,a\,b^2\,\mathrm {F}\left (\frac {c}{2}+\frac {d\,x}{2}\middle |2\right )}{d}+\frac {2\,a\,b^2\,\sqrt {\cos \left (c+d\,x\right )}\,\sin \left (c+d\,x\right )}{d}-\frac {2\,b^3\,{\cos \left (c+d\,x\right )}^{7/2}\,\sin \left (c+d\,x\right )\,{{}}_2{\mathrm {F}}_1\left (\frac {1}{2},\frac {7}{4};\ \frac {11}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{7\,d\,\sqrt {{\sin \left (c+d\,x\right )}^2}} \]

input
int((a + b*cos(c + d*x))^3/cos(c + d*x)^(1/2),x)
 
output
(2*a^3*ellipticF(c/2 + (d*x)/2, 2))/d + (6*a^2*b*ellipticE(c/2 + (d*x)/2, 
2))/d + (2*a*b^2*ellipticF(c/2 + (d*x)/2, 2))/d + (2*a*b^2*cos(c + d*x)^(1 
/2)*sin(c + d*x))/d - (2*b^3*cos(c + d*x)^(7/2)*sin(c + d*x)*hypergeom([1/ 
2, 7/4], 11/4, cos(c + d*x)^2))/(7*d*(sin(c + d*x)^2)^(1/2))